Open-Review Journal Launched
A new journal that publishes peer review comments alongside its manuscripts goes live.

By Edyta Zielinska | February 13, 2013

The new open-access, open-peer-review journal, PeerJ, published its first 30 articles online yesterday (February 12).

"We are doing things that no other publisher is doing," said Jason Hrvit, Co-Founder and CEO of PeerJ, in a press release. "The global academic community pays as much as $9.38 per year for access to academic journals. We believe that these costs could be reduced by as much as 73 percent using new business models."

PeerJ comes in the midst of an ongoing debate about the foundation of science publishing, and a push by many in the research community to be more open. (See "Witwer Science Publishing" for a full discussion.) The journal has assembled an editorial board of 800 academics along with an advisory board that includes five Nobel laureates. The decision of whether to publish a submitted manuscript is based more on scientific validity than on impact, and the journal encourages reviewers to post their comments alongside the articles. The journal uses a creative commons license that allows for free distribution and dissemination with the appropriate attribution.

One of the studies published yesterday is a neuroscience study of Penn and Teller's "Cups and Balls" magic trick. Hailed as one of the oldest tricks in history, "we still don't know how it works in the brain," one of the study authors said in a release. The researchers tracked the attention of observers of the trick as it becomes disarray.

Related Articles

Through the Eyes of a Giant
By Mary Beth Abular
A new play explores the mind of the father of modern physics through his interactions—factual and imagined—with a curmudgeonly colleague.

Bigfoot DNA is Bunk
By Dan Cossins
The group that last year claimed to have sequenced the Sasquatch genome has finally published its data in a brand new journal, and geneticists are not impressed.

Dual Adaptation in Deaf Brains
By Sabrina Richards
The brains of people who cannot hear adapt to process vision-based language, in addition to brain changes associated with the loss of auditory input.