Are animals conscious?

Air pollution: mechanisms of neuroinflammation
Microsaccades: a neurophysiological analysis
Schizophrenia and neurodevelopment

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright
Microsaccades: a neurophysiological analysis

Susana Martinez-Conde¹, Stephen L. Macknik², Xoana G. Troncoso¹,² and David H. Hubel³

¹ Barrow Neurological Institute, Phoenix, AZ, USA
² Division of Biology, California Institute of Technology, Pasadena, CA, USA
³ Department of Neurobiology, Harvard Medical School, Boston, MA, USA

Microsaccades are the largest and fastest of the fixational eye movements, which are involuntary eye movements produced during attempted visual fixation. In recent years, the interaction between microsaccades, perception and cognition has become one of the most rapidly growing areas of study in visual neuroscience. The neurophysiological consequences of microsaccades have been the focus of less attention, however, as have the oculomotor mechanisms that generate and control microsaccades. Here we review the latest neurophysiological findings concerning microsaccades and discuss their relationships to perception and cognition. We also point out the current gaps in our understanding of the neurobiology of microsaccades and identify the most promising lines of enquiry.

Introduction
Eye movements are critical in piecing together a coherent visual perception of the world around us. Fixational eye movements, the microscopic and unnoticed motions of the eye made when fixing the gaze between larger eye movements, are perhaps the least understood of all eye movement types, despite their critical importance to normal vision. Classical studies have demonstrated that, in the absence of fixational eye movements, neural adaptation ensues and observers become functionally blind to stationary objects during fixation [1–4]. Fixational eye movements comprise microsaccades, drift and tremor. Table 1 lists microsaccade parameters in recent publications (Ref. [4] lists the characteristics of microsaccades, drift and tremor according to studies published in 2004 and earlier).

Microsaccades are the largest and fastest of the fixational eye movements. They contribute to maintaining visibility during fixation by shifting the retinal image in a fashion that overcomes adaptation, thus generating neural responses to stationary stimuli in visual neurons [4–6]. Recent discoveries have shown that microsaccades are critically related to many aspects of visual perception [6–11], attention and cognition [12–16] and are thus potentially very important in neurological and ophthalmic disease [17]. The last decade of research has seen a very rapid increase in the number of papers dedicated to microsaccades, with the highest increase in the last few years [18]. Once considered a mere nervous tic [19], microsaccades are today a central and fast-growing topic of interest in the visual, oculomotor and cognitive neurosciences [20]. The field of inquiry spans the perceptual effects of microsaccades, the neural responses they evoke and their oculomotor generation mechanisms.

Our objectives in this review are three-fold: (1) to discuss the most recent advances in microsaccade research within a neurophysiological framework; (2) to analyze how discoveries in specific areas of microsaccade research (oculomotor, visual and cognitive neuroscience) impact on other findings and help in interpretation; and (3) to identify current trends in the field, their expected contributions in the near future and the most important gaps to address. We first focus on recent progress in microsaccade characterization, a technically complex task because of the microscopic nature of microsaccades and their overlap in physical characteristics with those of large or exploratory saccades. We then address the neural responses evoked by

Glossary

Bursts: Clusters of action potentials.
Covert attention: Attention directed to stimuli that are not in the center of gaze.
Discrete sampling: Time-limited measurement of continuous time-varying data.
Drifts: Slow curvy motions that occur between microsaccades.
Endogenous attention: Attention that is directed voluntarily by top-down mechanisms.
Exogenous attention: Attention that is automatically drawn to a stimulus in a reflexive or bottom-up manner.
Inhibition of return: the phenomenon by which a stimulus presented at a recently attended location evokes a weaker reaction than a stimulus appearing at a location not yet attended.
Microsaccades: Involuntary saccades produced during attempted fixation. They carry the retinal image across a range of several dozen to several hundred photoreceptor widths.
Spatial summation: The combination of two or more inputs arriving simultaneously through different synapses within a neuron’s dendritic tree.
Temporal summation: The combination of two or more inputs arriving non-simultaneously through the same or different synapses within a neuron’s dendritic tree.
Tremor: Very fast (~90 Hz), extremely small oscillation (about the diameter of a foveal cone) superimposed on drifts.
Visual masking: A visible target (a visual stimulus, such as a rectangle) is rendered invisible by changing the context in which the target is presented without actually modifying the physical properties of the target itself. That is, the target becomes less visible due solely to its spatial and/or temporal context.
Table 1. Physical parameters of microsaccades (as reported by original research studies in 2004–2009)

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>Frequency</th>
<th>Intersaccadic Interval</th>
<th>Duration</th>
<th>Velocity</th>
<th>Binocularity required</th>
<th>Species</th>
<th>Eye Tracking</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>max: 1.4°</td>
<td>mean: >2Hz</td>
<td>min: 16.8 ms</td>
<td>mean: 4.43 °/s max: 200 °/s</td>
<td>No monkey</td>
<td>1000Hz Scleral Search Coil 238 Hz SMI iView X Hi-Speed eye tracker 200Hz Scleral Search Coil Experiment 1</td>
<td>[50]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max: 1° &</td>
<td>mean: 0.25Hz</td>
<td>min: 20 ms</td>
<td>mean: 10 ms max: 300 ms mean: 20.3 ms</td>
<td>min: 8 °/s peak: 38.8 °/s</td>
<td>monkey</td>
<td>200Hz Scleral Search Coil Experiment 1</td>
<td>[11]</td>
<td></td>
</tr>
<tr>
<td>mean: 22.6°</td>
<td>mean: 0.76Hz</td>
<td>min: 20 ms</td>
<td>mean: 10 ms max: 300 ms mean: 19.7 ms</td>
<td>min: 10 °/s peak: 30.3 °/s</td>
<td>monkey</td>
<td>200Hz Scleral Search Coil Experiment 1</td>
<td>[11]</td>
<td></td>
</tr>
<tr>
<td>mean: 21.4°-29.0°</td>
<td>mean: 0.65-1.7Hz</td>
<td>min: 20 ms</td>
<td>min: 10 ms max: 300 ms mean: 23.9 ms</td>
<td>min: 8°-10°/s peak: 16.4-47.1°/s</td>
<td>monkey</td>
<td>200Hz ASL6000 and 1000Hz Eyelink1000 Experiment 3</td>
<td>[25]</td>
<td></td>
</tr>
<tr>
<td>max: 2°</td>
<td>mean: 13.7°</td>
<td>min: 6 ms</td>
<td>mean: 8°/s</td>
<td>No monkey</td>
<td>100 Hz DPI eye tracker & 200 Hz eyecoil monocular</td>
<td>human</td>
<td>500 Hz Eyelink II</td>
<td>[85]</td>
</tr>
<tr>
<td>max: 1°</td>
<td>mean: 3°</td>
<td>min: 6 ms</td>
<td>min: 10°/s</td>
<td>No human</td>
<td>250 Hz HS Video Eyetracker</td>
<td>human</td>
<td>500 Hz Eyelink II</td>
<td>[114]</td>
</tr>
<tr>
<td>max: 2°</td>
<td>range: 1°-36°</td>
<td>mean: 1.08Hz</td>
<td>min: 100 ms</td>
<td>No monkey</td>
<td>1000 Hz eyecoil monocular</td>
<td>human</td>
<td>500 Hz Eye</td>
<td>[61]</td>
</tr>
<tr>
<td>min: 3°-6°</td>
<td>mean: 10°/s</td>
<td>min: 6 ms</td>
<td>mean: 8°/s max: 11°/s</td>
<td>No monkey</td>
<td>100 Hz DPI eye tracker & 200 Hz eyecoil monocular</td>
<td>human</td>
<td>500 Hz Eyelink II</td>
<td>[46]</td>
</tr>
<tr>
<td>max: 1°</td>
<td>mean: 1°</td>
<td>min: 6 ms</td>
<td>mean: 12°/s peak: 39°/s</td>
<td>Yes human</td>
<td>500 Hz Eyelink II binocular (during prolonged fixation)</td>
<td>human</td>
<td>500 Hz Eyelink II binocular</td>
<td>[14]</td>
</tr>
<tr>
<td>max: 1°</td>
<td>mean: 0.39°</td>
<td>mean: 20 ms</td>
<td>mean: 0°.2-1.3Hz min: 20 ms</td>
<td>Yes human</td>
<td>500 Hz Eyelink II binocular (during free-viewing)</td>
<td>human</td>
<td>500 Hz Eyelink II binocular</td>
<td>[7]</td>
</tr>
<tr>
<td>max: 1°</td>
<td>mean: 0.41°</td>
<td>mean: 0.7Hz</td>
<td>min: 20 ms max: 13 ms mean: 6°/s</td>
<td>Yes human</td>
<td>500 Hz Eyelink II binocular</td>
<td>human</td>
<td>500 Hz Eyelink II binocular</td>
<td>[8]</td>
</tr>
<tr>
<td>max: 2°</td>
<td>mean: 0.4°</td>
<td>mean: 1.0Hz</td>
<td>min: 20 ms max: 18 ms mean: 6°/s</td>
<td>Yes human</td>
<td>500 Hz Eyelink II binocular</td>
<td>human</td>
<td>500 Hz Eyelink II binocular</td>
<td>[52]</td>
</tr>
<tr>
<td>max: 1.66° (observed)</td>
<td>mean: 0.57-2.54Hz</td>
<td>min: 12 ms</td>
<td>mean: 1.4Hz</td>
<td>No human</td>
<td>500 Hz Eyelink II monocular</td>
<td>human</td>
<td>500 Hz Eyelink II monocular</td>
<td>[84]</td>
</tr>
<tr>
<td>max: 1.5°</td>
<td>mean: 15°</td>
<td>min: 15 ms</td>
<td>mean: 1.25-1.8Hz</td>
<td>No human</td>
<td>200 Hz Fourward DPI v.6.3 eye coil monocular</td>
<td>human</td>
<td>500 Hz Eyelink II binocular</td>
<td>[82]</td>
</tr>
<tr>
<td>max: 1°</td>
<td>mean: 12°</td>
<td>min: 300°/s max: 15°</td>
<td>mean: 5°/s</td>
<td>No monkey</td>
<td>1000Hz Scleral Search Coil 238 Hz SMI iView X Hi-Speed eye tracker 200Hz Scleral Search Coil Experiment 1</td>
<td>[78]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max: 2°</td>
<td>mean: 12°</td>
<td>min: 300°/s max: 15°</td>
<td>mean: 5°/s</td>
<td>No monkey</td>
<td>1000Hz Scleral Search Coil 238 Hz SMI iView X Hi-Speed eye tracker 200Hz Scleral Search Coil Experiment 1</td>
<td>[78]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max: 1°</td>
<td>mean: 6°</td>
<td>min: 6ms</td>
<td>mean: 12°</td>
<td>Yes human</td>
<td>500 Hz Eyelink II binocular</td>
<td>human</td>
<td>500 Hz Eyelink II binocular</td>
<td>[58]</td>
</tr>
</tbody>
</table>
microsaccades in the visual system, the perceptual consequences of such responses, the role of microsaccades in attention and cognition and the oculomotor mechanistic pathways that control microsaccade generation and targeting. Finally, we discuss the proposal that the visual system uses microsaccades as an optimal sampling strategy and outline the outstanding questions and directions for future research.

Physical and functional properties of microsaccades

Even though microsaccades are the largest and fastest fixational eye movement, they are relatively small in amplitude, carrying the retinal image across a range of several dozen to several hundred photoreceptor widths [4] (Box 1, and Table 1). Such small amplitudes complicate objective microsaccade characterization; thus, it is important to define the properties that microsaccades have in common with other types of eye movements, as well as those features that set them apart.

Microsaccades in monkeys are similar to those in humans [4,5,21] (see Figure I in Box 1) and have been described in other foveate vertebrates as well [22]. Importantly, microsaccades and saccades share many physical and functional characteristics, which suggests that both eye movements have a common oculomotor origin [14,23–25]. The shared properties of microsaccades and saccades can be summarized as follows (list modified from Ref. [24]):

(i) Microsaccades and saccades are generally binocular, conjugate movements with comparable amplitudes and directions in both eyes [26–28].

(ii) Microsaccades and saccades follow the main sequence. That is, microsaccade/saccade peak velocities are parametrically related to microsaccade/saccade amplitudes [14,23] (Figure 1a), as are microsaccade/saccade durations [7,29].

(iii) Visual perception thresholds are elevated during saccades and microsaccades, a phenomenon referred to as saccadic/microsaccadic suppression [11,30–35].

(iv) Intersaccadic intervals during reading are comparable to inter-microsaccadic intervals during fixation on a single letter [36].

(v) Saccade and microsaccade rates can be reduced intentionally and during specific tasks [37–40].

(vi) Voluntary saccades can be as small as fixational microsaccades [41].

(vii) Saccades and microsaccades have been linked to shifts in covert attention (see Attentional and cognitive modulation of microsaccades).

Moreover, recent research has demonstrated strong interactions in the generation of saccades and microsaccades:

(i) Microsaccade rates and amplitudes decrease before the launch of a saccade [42,43].

(ii) Microsaccades occurring up to several hundred milliseconds before the saccadic start signal delay the launch of the saccade [42,43].

(iii) Intersaccadic intervals are equivalent for all pair-wise combinations of saccades and microsaccades during both fixation and free-viewing/visual search tasks [14].

Thus, the dichotomy between saccades and microsaccades proposed by previous studies might be fundamentally arbitrary.

The superior colliculus (SC) is a retinotopically organized structure involved in generating and controlling
voluntary saccades. Current evidence overwhelmingly points to a key role of the SC in microsaccade production. This idea has been advanced in behavioral and computational studies [14,24,42,43] but direct confirmation was only recently obtained in inactivation and electrophysiological studies in primate SC [25] (see Brain mechanisms of microsaccade generation).

Visual responses to microsaccades

Microsaccades play a critical role in maintaining visibility during fixation; thus, the neural activity evoked by microsaccades throughout the visual system can help in identifying the neural codes of visibility. Visual responses to microsaccades are the neural responses to changes in visual inputs evoked by microsaccadic displacements of the retina. Single neuron responses to microsaccades have been measured in the lateral geniculate nucleus (LGN), area V1 and several areas of the extrastriate cortex of awake monkeys. Despite some discrepancies across studies, presumably caused by a combination of differences in recording systems, characterization algorithms, visual stimuli and behavioral tasks used, there is general agreement that microsaccades primarily modulate neural activity in early visual areas through retinal motion. That is, microsaccades primarily generate neural responses by displacing the receptive fields (RFs) of visual neurons over otherwise stationary stimuli [5,17,44,45] or even moving stimuli [46], as discussed below and reviewed elsewhere [4,17]. Donner and Hemilä [47] modeled the effects of microsaccades on the responses of primate retinal neurons using physiologically realistic parameters. The results suggested that microsaccades might significantly enhance sensitivity to edges, re-sharpen the image and improve spatial resolution. The results of this study support the prediction that microsaccades first generate neural activity in retinal neurons, perhaps as early as the photoreceptor level. This retinal activity might then be transmitted to the next several steps in the visual hierarchy [4,5,44].

Microsaccades could help to disambiguate latency and contrast in visual perception [4,5]. Changes in contrast can be encoded as changes in the latency of neuronal responses [48,49]. The question arises as to how latency information can be used as a code for contrast without the brain first knowing the timing of events. Because the brain “knows” when a microsaccade is generated, differential latencies in visual responses might be used by the visual system to indicate differences in contrast and salience.

Microsaccades might also enhance spatial summation by synchronizing the activity of neurons with neighboring RFs. By generating bursts of spikes in visual neurons, microsaccades might moreover enhance temporal summation of responses in neurons with neighboring RFs [4].

To date, most studies addressing the effects of microsaccades on visual physiology have focused on the responses of individual neurons. However, recent research has begun to tackle the physiological effects of microsaccades on neuronal populations. Synchronized neuronal oscillation has been described as a signature of perceptual processes associated with object representation, attention, memory and consciousness. A recent study has found microsaccades to modulate both neuronal activity and visually induced gamma-band (30-100 Hz) synchronization (GBS) in primate areas V1 and V4. Microsaccade-induced
perturbations in GBS were moreover correlated with variability in behavioral response speed [50]. These results are consistent with those of an earlier study showing synchronization of neural activity due to fixational eye movements in the turtle retina [51]. Future research should further explore the modulation of synchronous activity by microsaccades along the primate visual pathway.

Yuval-Greenberg et al. [52,53] have also recently pointed out that some commonly accepted measures of GBS might be contaminated by microsaccades in an unexpected fashion (see Ref. [54] for a counterpoint and the authors’ reply in Ref. [55]). Yuval-Greenberg et al. found that the scalp-measured induced gamma-band EEG response (iGBR) largely results from small muscle artifacts associated with microsaccade production. Thus, whereas gamma-band activity might indeed play a role in brain processing (and might be modulated by microsaccades, as discussed above), care must be taken in the design and interpretation of future iGBR studies.

The study of microsaccade-driven neural activity might be pushed further in the near future thanks to recent improvements in eye-tracking technology during functional imaging. The explosion of microsaccade studies over the last decade has had much to do with the recent availability of fast and reliable eye-tracking systems for non-invasive microsaccade measurements in human subjects [4]. However, progress has been hampered by the technical limitations of obtaining non-invasive measures of brain activity during microsaccade recordings in humans. Recent efforts have succeeded in measuring BOLD signal correlates of microsaccades in human visual cortex via high-speed (1000-Hz sampling) infrared eye-tracking during fMRI. This line of inquiry should be encouraged because it will provide a much needed measure of the neural activity triggered by microsaccades throughout the human visual system, ideally in correlation with perceptual measures. Furthermore, it raises the possibility that many past fMRI results might have been arisen due to uncontrolled microsaccades, thus forcing a re-evaluation of past functional imaging data [56]. Indeed, a large amount of physiological and psychophysical visual research to date has been carried out when human and primate subjects were engaged in tasks involving visual fixation. Thus, understanding the precise physiological and perceptual contributions of microsaccades will be critical to the interpretation of previous and future research in visual neuroscience.

Perceptual consequences of microsaccades

For many decades there has been debate on whether microsaccades might preserve vision by preventing visual fading. However, no studies had directly correlated microsaccades (or any other specific fixational eye movement) to visibility. Thus, by 1980 an impasse was reached in the study of fixational eye movements [19,57]. Over two decades later, a direct link between microsaccade production and visual perception was finally demonstrated. To establish the correlation between microsaccades and visibility, Martinez-Conde et al. conducted a behavioral experiment in which human subjects fixated a small spot and simultaneously reported the visibility of a visual target via button press [6]. The authors found that increased microsaccade production during fixation resulted in enhanced visibility for peripheral (9° and 6° of eccentricity) and parafoveal (3° of eccentricity) visual targets. Conversely, decreased microsaccade production led to periods of visual fading. Head restraint (or lack thereof) did not significantly change microsaccade dynamics (thus indicating that microsaccades are a natural oculomotor behavior rather than a laboratory artifact) or alter the link between micro-

![Figure 1](image-url)
Perceptual suppression during large saccades is known to exist [63–67] but the existence of microsaccadic suppression has been more controversial. Some studies have reported elevation of visual thresholds [30,68] but others have found little or no threshold elevation during microsaccades [69,70]. Recent results by Herrington et al. [11] might represent a neural correlate of microsaccadic suppression. The authors recorded microsaccades and neural responses in middle temporal, lateral intraparietal and ventral intraparietal areas while monkeys performed motion detection tasks. Microsaccades randomly occurring near the time of test-stimulus onset decreased detection performance and suppressed neural activity, contributing to the correlation between neural activity and detection behavior for all three brain areas investigated (microsaccades accounted for approx. a fifth of the correlation). These findings could have important implications for future research to determine the neuronal populations underlying perceptual decisions in behaving primates (who make microsaccades during the experiments).

Future research should determine how increases and decreases in visibility triggered by microsaccades relate to different points in the lifetime of a microsaccade. For instance, decreases in visibility might occur during a microsaccade’s flight, whereas enhanced visibility due to microsaccades could be driven by microsaccade termination (i.e. microsaccade “landing”).

Attentional and cognitive modulation of microsaccades
Recent reports have shown a link between microsaccades and cognitive processes such as attention. This association is not altogether surprising given the considerable overlap between the neural systems contributing to control of attention and control of eye movements [71]. Several studies have thus addressed the effects of shifts in spatial attention on microsaccade production. Hafed and Clark proposed that microsaccades occur because of subliminal activation of the oculomotor system by covert attention [13]. Since then, there has been consensus that microsaccade rates are modulated by both endogenous (top-down) and exogenous (bottom-up) attentional shifts, with a transient decrease in the rate of microsaccade production approximately 100–200 ms after cue onset, usually followed by a temporary enhancement ~300–400 ms after cue onset [8,12,13,61,72–77]. Recent research has linked microsaccade production to other cognitive processes, such as working memory [15,76], and suggested that the absolute frequency of microsaccades is also sensitive to top-down attentional and cognitive modulations [14,78].
Many of these studies have predicted that the neural circuitry controlling microsaccades includes the SC, given the involvement of the SC in the targeting of large saccades, which presumably occurs in connection to shifts in attentional focus.

The modulation of microsaccade production by attention and cognition might be (at least in part) related to a role of microsaccades in enhancing visibility and preventing fading during cognitive tasks. That is, cognitive processes such as attention could modulate microsaccade generation to dynamically enhance or suppress low-level visual information at various points in time. This possibility is unexplored so far.

A number of recent papers have also found that microsaccade directions are biased towards and/or away from the spatial location suggested by an attentional cue (approx. 200 ms following the cue) [12,13,18,73,75,76,79,80] (but see Refs [74,81,82] for a counterpoint). Some of the apparent disagreement across studies might be explained by engagement of endogenous versus exogenous attention in different experimental tasks. Central informative cues (i.e., cues presented at fixation) that engage endogenous attention might produce microsaccade biases towards the peripheral location suggested by the cue [12,13,80]. By contrast, salient peripheral cues (visual or auditory, informative or uninformative) that engage exogenous attention might result in microsaccade biases opposite to the cue [72,80,83]. The observation of microsaccade biases opposite to salient and abrupt peripheral events is consistent with inhibition of return [16,75,84,85].

A related topic of ongoing debate is whether biases in microsaccade directions indicate shifts in covert attention [12,13,79] and/or motor programming [42,78,82,84].

Brain mechanisms of microsaccade generation

Experimental evidence on the neurobiological origins of microsaccades has been sparse until very recently, constituting a major gap in our physiological understanding of these eye movements. Whereas the relationship between circuits controlling saccadic accuracy and fixation targeting is well documented [86–90], few neurophysiological studies have investigated the specific pathways responsible for the generation of microsaccades during fixation. Except for a handful of studies, most of the literature on oculomotor mechanisms of microsaccade generation is only 2–3 years old. The studies by Van Gisbergen and colleagues in the late 1970s and early 1980s are worth noting. These authors found that putative motoneurons in the primate abducens nucleus and burst neurons in the nearby pontomedullary reticular formation (downstream of the SC) were active during saccades and microsaccades [91,92]. For decades, this was the main neurophysiological evidence of a common oculomotor mechanism underlying the generation of saccades and microsaccades.

In recent years, mounting behavioral evidence has identified the SC as a key structure in the generation of both saccades and microsaccades (see Physical and functional properties of microsaccades for further details). Recent physiological data support these predictions. Hafed and colleagues [25] made recordings from the rostral pole of the SC (which represents foveal goal locations) and found that individual neurons had particular preferences for a range of microsaccade amplitudes and locations (Figure 1b). Furthermore, the data indicated a continuous representation of saccade amplitudes and directions throughout the SC, down to the smallest microsaccades. Neuronal activity during microsaccades sometimes extended to small voluntary saccades, consistent with previous studies suggesting a microsaccade–saccade continuum [14,23]. Neurons active during both microsaccades and voluntary saccades usually preferred voluntary saccades smaller than 5°. Conversely, neurons that were active during large voluntary saccades (~10° in amplitude; more caudal in the SC map) were not active during microsaccades. Importantly, inactivation of the rostral SC led to reduced microsaccade rates, further supporting a causal role of the rostral SC in microsaccade generation [25] (Figure 1c). These results, together with the earlier behavioral studies [14,42,43] and the observations that premotor neurons in the brainstem reticular formation are active during microsaccades [91,92], demonstrate that voluntary saccades and fixational microsaccades share the same neural mechanisms [14].

Hafed and colleagues also created a computer model based on the SC data to explain how shifts in covert attention may bias microsaccade directions during fixation [25]. In this model, attending to a peripheral location caused the average locus of SC activity to slightly shift towards the peripheral site, leading to a higher probability of microsaccade direction towards the attended location [25]. Hafed and colleagues concluded that microsaccade occurrence depends on the variability of SC activity representing salient goal locations and suggested that such a mechanism might also explain the link between changes in microsaccade rates and changes in visibility found by Martinez-Conde et al. [6] (Figure 2; see Perceptual consequences of microsaccades).

The recent SC experiments are an important milestone in establishing the neural mechanisms leading to microsaccade generation. Further research should aim to identify the complete oculomotor pathway and the specific circuitry involved at each neural stage.

Microsaccades as an optimal sampling strategy

Eye movements are critical to normal vision: if all eye movements are counteracted, visual perception rapidly fades due to adaptation. Thus, human eyes, as well as the eyes of other vertebrates [22], are in continuous motion, with saccades and microsaccades abruptly shifting the retinal image at intervals ranging from once every several seconds to several times per second [93]. Saccades and microsaccades have comparable spatiotemporal characteristics across many varied visual tasks and viewing conditions [14]. Here we discuss how the spatiotemporal dynamics of saccades and microsaccades might reflect an optimal sampling strategy by which the brain discretely acquires visual information.

Gilchrist et al. observed that a patient who was unable to make eye movements (except for small-amplitude drifts) produced head saccades that were comparable in many of their characteristics to eye saccades in normal observers. Such similar characteristics included saccadic amplitude,
Box 2. Flashed before your eyes: transient responses to flashes versus microsaccades

Two recent studies have shown that the responses of area V1 neurons to flashes are greater than, but of the same order of magnitude as, responses to microsaccades. This box reproduces the relevant plots from both studies with a matching color scheme to facilitate direct comparison (the original graphs are otherwise unchanged).

The left panel of Figure II is from Ref. [44]. The red and black curves plot the same exact V1 data, realigned to two different trigger events: flash onsets (red) and microsaccade onsets (black). See Microsaccades as an optimal sampling strategy for further details.

The right panel is from Ref. [45]. This study compared the responses to microsaccades in the presence of a stationary bar to the responses to a flashing bar shown at a different time. The paper concluded “The similarity between the responses to flashes and the activation by fixational saccades [found by Kagan et al.] contrasts sharply with a prior report indicating that flashes are about 7 times as effective as fixational saccades for V1 neurons” [45]. Here we illustrate how this apparent disagreement is reconciled by applying the same calculations to the data plots from both studies. Kagan et al. computed the ratio between the peaks for microsaccade and flash responses and concluded that the peak probability of response to microsaccades was 45% of the probability of response to flashes. This same analysis applied to the data set of Martinez-Conde et al. results in a value of 42%. Martinez-Conde et al. considered the differing baselines of microsaccade and flash response plots; thus, they compared the peak-to-baseline relation for each curve. This produced a value of 7.6 (meaning that the peak increase in spike probability after a flash was about seven-fold higher than the peak increase in spike probability after a microsaccade). This analysis applied to the Kagan et al. study results in a value of 7.1. Thus, the results from both studies are equivalent and indeed support each other. Alternative quantifications are also possible. Perhaps a better metric, which was not calculated by either study, would be to subtract the baseline from each peak response and then calculate the ratios for the resultant values. More importantly, the results from both studies are consistent with each other, regardless of the specific metrics used to compare them and despite their methodological differences.

![Figure II](image-url)

Martinez-Conde et al (2002)

![Graph](image-url)

![Graph](image-url)

<table>
<thead>
<tr>
<th>Kagan et al metric</th>
<th>Martinez-Conde et al data</th>
<th>Kagan et al data</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak of response to flash</td>
<td>0.100</td>
<td>0.144</td>
</tr>
<tr>
<td>peak of response to microsaccade</td>
<td>0.042</td>
<td>0.065</td>
</tr>
<tr>
<td>ratio of the peaks</td>
<td>0.042/0.100 = 42%</td>
<td>0.065/0.144 = 45%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Martinez-Conde et al metric</th>
<th>Martinez-Conde et al data</th>
<th>Kagan et al data</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak of response to flash</td>
<td>0.100</td>
<td>0.144</td>
</tr>
<tr>
<td>baseline of response to flash</td>
<td>0.006</td>
<td>0.065</td>
</tr>
<tr>
<td>peak-to-baseline relation</td>
<td>0.106/0.006 = 16.7</td>
<td>0.144/0.006 = 24.0</td>
</tr>
<tr>
<td>peak of response to microsaccade</td>
<td>0.042</td>
<td>0.065</td>
</tr>
<tr>
<td>baseline of response to microsaccade</td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td>peak-to-baseline relation</td>
<td>0.042/0.019 = 2.2</td>
<td>0.065/0.019 = 3.4</td>
</tr>
<tr>
<td>ratio of the peak-to-baseline relation</td>
<td>16.7/2.2 = 7.6</td>
<td>24.0/3.4 = 7.1</td>
</tr>
</tbody>
</table>

Figure II. Neural responses to flashes versus microsaccades in Martinez-Conde et al. 2002 [44] (left panel) and Kagan et al. 2008 [45] (right panel). The accompanying tables confirm that the results from both studies are consistent with each other, regardless of the specific metrics used to compare them. The calculations were directly estimated from the population graphs in both papers (the results published by Martinez-Conde et al. [44] were first calculated numerically for each neuron, and then averaged across neurons).

the duration of the intersaccadic intervals, the length of intervening fixations and the range of visual scanning during exploration of pictures, although the peak velocity of head saccades was slower than that of regular eye saccades. These head saccades enabled the patient to read at normal speed and even perform complicated visuo-motor tasks, such as making a cup of tea, with no problems. Although microsaccades were not tested per se, the authors concluded that “saccadic movements, of the head or the eye, form the optimal sampling method for the brain”
The idea that saccades and microsaccades discretely sample visual information is further supported by physiological studies comparing neuronal responses triggered by saccades/microsaccades to responses triggered by instantaneous events, such as blinks and flashes (Box 2). Gawne and Martin measured the responses of neurons in V1, V2, V3/VVP and V4V to the onset and termination of visual stimuli elicited by flashes, blinks and saccades. Although a minority of neurons presented responses that varied as a function of the neural event, most of them showed similar responses regardless of condition, suggesting that the neural circuitry underlying visual perception responds to different transient events in a similar manner [97]. Martinez-Conde et al. [44] compared the transient responses to microsaccade onset to those generated by visual flash onset in 54 neurons of the LGN (n=48) and V1 (n=6). A periodic flashing bar (on for 1s, off for 1s) was presented over the RF of a neuron while the monkey fixated a cross. Responses to microsaccades that occurred while the flashing bar was on were directly compared to responses to flash onsets that occurred while the monkey produced microsaccades. The effectiveness of each microsaccade thus depended on the relative positions of the bar and the RF at the time of microsaccade onset. Likewise, the effectiveness of each flash depended on the relative positions of the bar and the RF at flash onset. Because of ongoing microsaccades and other eye movements, sometimes the flashing bar turned on exactly on top of the RF and sometimes it was displaced with respect to the RF center. Thus, any spatial shifts between the bar and the RF due to eye movements were equivalent across the microsaccade and flash response conditions. This experimental design facilitated direct statistical comparison of microsaccade- and flash-triggered responses in the same neurons and at the same time. Neural responses to flashes were stronger than but of the same order of magnitude as responses to microsaccades, perhaps because of the relative abruptness of flashes with respect to microsaccades (see Figure II in Box 2, left panel). Firing modulations caused by microsaccades could thus be equated to those caused by the reappearance or refrashing of the visual stimulus, albeit with a weaker neuronal response. Transient responses evoked by microsaccades in primate visual neurons often take the form of bursts of spikes [4,5,44]. These might or might not be accompanied by sustained firing during intersaccadic periods [45]. Bursty firing effectively indicates the presence of previous microsaccades in the awake fixating primate, suggesting that this type of neural activity might be highly conducive to sustaining a visible image during fixation [5,17,44]. In agreement with this idea, recent research has shown that microsaccades counter perceptual fading during fixation [6,7] and might lead to more efficient sampling of spatial detail [47]. Furthermore, the suppression of transient bursts of activity has been related to perceptual suppression during blinks [98] and to decreased target visibility in visual masking paradigms [99–101]. Other studies suggest that V1 neurons produce stronger responses to transient than to drifting stimuli. Such neural transients might underlie the behavior of cortical neurons as coincidence detectors [102,103]. Perceptual experiments have also shown that slow gradual changes (that presumably result in sustained neural firing) are difficult to detect, even in the absence of interruptions or distractions [104]. These results further support the notion that discrete temporal sampling might be an optimal strategy for visual perception.

Discrete temporal sampling might be optimal across a number of sensory systems. Sniffs in rodent olfaction discretely sample sensory information every 200–300 ms and thus are similar in their temporal dynamics to primate saccades [14,105] and microsaccades [14]. A similar mode of discrete sampling might also be present when objects are recognized through tactile information, for instance when subjects use their fingertips to identify an object with their eyes closed or when blind individuals read Braille script. Uchida et al. [105] suggested that discrete sensory sampling might be evolutionarily advantageous because it could speed up information processing (i.e. limiting the processing of low-level information to short chunks could facilitate rapid construction of global perceptual images). Thorpe et al. showed that the visual processing required to determine the gist of a briefly flashed natural scene can be achieved in 150 ms [106]. This interval could not be shortened, even after extensive training; thus, there might be a limit to the number of neural stages and speed involved in the processing of visual information [107]. The generation of a saccade every 200–300s could provide multiple individual high-acuity snapshots of a visual scene [105] (intersaccadic intervals are equivalent for saccades and microsaccades [14]). However, because of the limitations in visual processing speed stated above, faster rates of saccade/microsaccade production might not significantly improve vision. Finally, microsaccades might not be randomly produced in time, but triggered dynamically as a function of low retinal slip [58]. Future research should investigate whether microsaccades dynamically displace retinal images with a temporal structure that serves to overcome adaptation within a discrete sampling framework.

Summary and conclusions
Our aims in this review were to discuss the most recent advances in microsaccade research within a neurophysiological framework, to analyze how disparate discoveries in different areas of microsaccade research impact other findings and to identify current trends in the field. We first focused on the physical and functional properties of microsaccades and established that microsaccades and saccades must share a common oculomotor origin. We then discussed the neural responses to the retinal image displacements due to microsaccades and pointed to research showing that microsaccades evoke bursts of neural activity and strong synchronized responses in the early visual system. We reviewed recent studies that have linked perception directly to microsaccades for the first time, as well as the role of microsaccades in attention and cognition. We discussed the oculomotor evidence demonstrating the mechanistic pathways that control the common generation of microsaccades and saccades, some of which have been elucidated in recent neurophysiological studies of the SC.
Finally, we proposed that microsaccades and saccades might represent an optimal discrete temporal sampling strategy for the visual system.

Outstanding questions and directions for future research

The study of microsaccades is one of the fastest growing fields in contemporary neuroscience. However, some important gaps remain that would benefit from directed research efforts. Here we point out several areas of interest that are not discussed elsewhere in this review and some of the most promising current research directions.

Effect of microsaccades in central vision

Microsaccades have been linked to enhanced visibility of peripheral and parafoveal stimuli [6] and they generate visual responses in RFs at all eccentricities [44]. The foveal image change resulting from a microsaccade can also determine percept dominance in binocular rivalry [9]. However, the perceptual impact of microsaccades in foveal vision has not been directly investigated. Because foveal vision may be sustained in the absence of microsaccades, it has been argued that the perceptual role of microsaccades solely concerns the visual periphery. However, even if drifts and/or tremor can maintain foveal vision on their own, this does not rule out the possibility that microsaccades also have a role in foveal vision. Thus, if drifts and tremor were eliminated microsaccades alone might sustain foveal vision during fixation [4]. Future research should determine the perceptual consequences of the interaction between microsaccade amplitudes and receptive field sizes at varying retinal eccentricities, including those in the foveal range.

Effects of microsaccades in various visual phenomena

Microsaccade dynamics are related to perceptual transitions in visual fading [6], filling-in [7], illusory motion [8,10] and binocular rivalry [9]. Many other visual illusions are attenuated or even disappear when the observer fixates carefully and thus suppresses microsaccades. Therefore, microsaccades might drive (completely or partially) the generation of such illusory percepts [17]. Future research should determine the perceptual effects that are modulated by microsaccades and relate them to the underlying neural circuits.

Neural correlates of microsaccadic suppression

The world remains perceptually stable during microsaccades despite the fact that they cause sizable retinal motion that should be easily resolvable. Some studies have reported elevation of visual thresholds during microsaccades (i.e. microsaccadic suppression) but the neural correlates of this perceptual phenomenon are not well understood [4] (but see Ref. [11]). Furthermore, it is not known how perceptual suppression during microsaccades might interact temporally with the visibility enhancement also brought about by microsaccades [6,7].

Neural consequences of the attentional modulation of microsaccades

In the last few years numerous studies have investigated how microsaccade rates and/or directions are modulated by attention in a variety of tasks. However, the physiological consequences of such attentional modulation remain fundamentally unexplored. Furthermore, although the neural effects of increased attention as opposed to increased microsaccade production can be separated [108], it is possible that some neural and perceptual effects currently attributed to attention are, at least partially, due to dynamic changes in microsaccade production during attentional tasks. Future experiments should trace the neural pathways by which attention, cognition and microsaccades can interact.

Extraretinal modulation of neural responses by microsaccades

Microsaccades generate neural responses in early visual neurons by displacing their receptive fields over otherwise stationary stimuli. However, such clear-cut retinogeniculate cortical responses might be accompanied by less evident extraretinal modulations. Some recent studies suggest that microsaccade-driven extraretinal modulations are present in a minority of neurons in area V1, but the evidence is conflicting as to the sign of such modulations (inhibitory, excitatory or both) and their timing with respect to the primary retinal responses generated by microsaccades [4]. Different groups have found: (a) suppression of firing associated with microsaccade onset in a marginal percentage of V1 neurons [5]; (b) suppression of firing after microsaccades in about a third of V1 neurons [109] (although this group later stated that microsaccades increase activity in area V1 [110]); and (c) weak suppression of firing after microsaccade onset followed by stronger enhancement 100–200 ms later in a third of V1 neurons [45]. In every study the apparent extraretinal responses were much smaller than the neural responses explained by straightforward retinal activation. Future research should ascertain the potential extraretinal modulations contributed by microsaccades throughout the visual pathway and determine their neural origins (i.e. corollary discharge from oculomotor centers of the brain, top-down attentional feedback, etc) and perceptual consequences (e.g. as a neural correlate of perceptual suppression during microsaccades).

Microsaccades in visual and neural pathologies

Insufficient fixational eye movements lead to neural adaptation and fading, whereas excessive eye motion produces blurring and unstable vision during fixation [17]. Thus everyday vision achieves a very delicate balance. Even when we explore or search a visual scene, we fixate our gaze (in between large exploratory saccades) for 80% of the time [14,17]. However, few studies have focused on pathological fixational eye movements as a sign of or contributor to visual or neural disease [17,111]. Future research should assess the possible impairment of microsaccades and other fixational eye movements in central and peripheral pathologies and the potential implications for treatment and/or early diagnosis.

Acknowledgements

We thank Jorge Otero-Millan for scientific discussion and help with the figures and Isabel Gomez-Caraballo and Manuel Ledo for technical
References

7 Troncoso, X. et al. (2008) Microsaccades counteract perceptual filling-in. J. Vis. 8:14:15, 1–9
34 Zuber, B.L. et al. (1964) Saccadic suppression associated with microsaccades. Q. Prog. Rep. 74, 244–249
56 Tse, P.U. et al. (2007) fMRI BOLD signal reveals neural correlates of microsaccades. J. Vis. 7(9):318a

